Acknowledgment. Support was provided by an NIH grant (AI 28845), an NSF Presidential Young Investigator Award (1986), an Alfred P. Sloan Foundation Research Fellowship (1989–1991), and a Camille and Henry Dreyfus Foundation Teacher-Scholar Award (1988–1992) to J.L.S. We thank Profs. A. Gossauer and D. Dolphin for providing us with copies of the Ph.D. Dissertation and M.S. Thesis of Dr. H. Rexhausen and Mr. R. E. Danso-Danquah, respectively.

Supplementary Material Available: Synthetic experimental details for compounds 4a, 4b, and 7, X-ray experimental data for 7, and tables of atomic thermal factors, atomic positional parameters, bond distances, and angles for 7 (22 pages); listing of observed and calculated structure factor amplitudes for 7 (24 pages). Ordering information is given on any current masthead page.

Formation of a Copper-Dioxygen Complex (Cu₂-O₂) Using Simple Imidazole Ligands

Indrajit Sanyal,[†] Richard W. Strange,[‡] Ninian J. Blackburn,^{*,§} and Kenneth D. Karlin^{*,†}

Department of Chemistry, The Johns Hopkins University Baltimore, Maryland 21218 Daresbury Laboratory, Warrington, WA4 4AD, UK Department of Chemical and Biological Sciences Oregon Graduate Institute, Beaverton, Oregon 97006-1999 Received March 21, 1991

Side-chain imidazole ligation (derived from histidine) pervades the active-site chemistry of copper metalloproteins, including the O_2 -carrier hemocyanin (Hc),¹ in addition to copper oxygenases and oxidases.² In bioinorganic modeling studies, there has been considerable recent progress in the characterization of synthetically derived { Cu_2-O_2 } species,^{2a,3-5} but these systems have generally not utilized imidazole ligands. There is a good deal of interest in polyimidazole copper complexation,^{6,7} and here we report that

[†] Johns Hopkins University.

[‡]Daresbury Laboratory.

*Address for correspondence: Professor K. D. Karlin, Dept. of Chemistry, The Johns Hopkins University, Charles and 34th Sts., Baltimore, MD 21218. *Oregon Graduate Institute.

(1) (a) Volbeda, A.; Hol, W. G. J. J. Mol. Biol. 1989, 209, 249–279. (b) Solomon, E. I. In Metal Clusters in Proteins; Que, L., Jr., Ed.; ACS Symposium Series 372; American Chemical Society: Washington, DC, 1988; pp 116–150.

(2) (a) Karlin, K. D.; Gultneh, Y. Prog. Inorg. Chem. 1987, 35, 219-327.
(b) Copper Proteins and Copper Enzymes; Lontie, R., Ed.; CRC: Boca Raton, FL, 1984; Vols. 1-3.

(3) Sorrell, T. N. Tetrahedron 1989, 45, 3-68.

(4) Kitajima, N.; Fujisawa, K.; Moro-oka, Y. J. Am. Chem. Soc. 1989, 111, 8975-8976.

(5) Tyeklár, Z.; Karlin, K. D. Acc. Chem. Res. 1989, 22, 241-248.

(6) (a) Tolman, W. B.; Rardin, R. L.; Lippard, S. J. J. Am. Chem. Soc.
1989, 111, 4532-4533. (b) Traylor, T. G.; Hill, K. W.; Tian, Z.; Rheingold,
A. L.; Peisach, J.; McCracken, J. J. Am. Chem. Soc. 1988, 110, 5571-5573.
(c) Knapp, S.; Keenan, T. P.; Zhang, X.; Fikar, R.; Potenza, J. A.; Schugar,
H. J. J. Am. Chem. Soc. 1990, 112, 3452-3464. (c) Sorrell, T. N.; Garrity,
M. L. Inorg, Chem. 1991, 30, 210-215. (d) Oberhausen, K. J.; O'Brien, R.
J.; Richardson, J. F.; Buchanan, R. M. Inorg. Chim. Acta 1990, 173, 145-154.
(e) Merrill, C. L.; Wilson, L. J.; Thamann, T. J.; Loehr, T. M.; Ferris, N. S.;
Woodruff, W. H. J. Chem. Soc., Dalton Trans. 1984, 2207-2221. (f) Vansteenbergen, A. C.; Bouwman, E.; deGraaff, R.; Driessen, W. L.; Reedijk, J.;
Zanello, P. J. Chem. Soc., Dalton Trans. 1990, 3175-3182. (g)
Güntensperger, M.; Zuberbühler, A. D. Helv. Chim. Acta 1977, 60, 2584.

Guntensperger, M.; Zuberbühler, A. D. Helv. Chim. Acta 1977, 60, 2584.
(7) Polyimidazole ligands are also of interest in studies using Fe, Zn, and Mn; see, for example: (a) Tolman, W. B.; Liu, S.; Bentsen, J. G.; Lippard, S. J. J. Am. Chem. Soc. 1991, 1/3, 152-164. (b) Gorun, S. M.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J. Am. Chem. Soc. 1987, 109, 4244-4255. (c) Sessler, J. L.; Hugdahl, J. D.; Lynch, V.; Davis, B. Inorg, Chem. 1991, 30, 334-336. (d) Breslow, R.; Hunt, J. T.; Smiley, R.; Tarnowski, T. J. Am. Chem. Soc. 1983, 105, 5337-5342. (e) Slebocka-Tilk, H.; Cocho, J. L.; Frakman, Z.; Brown, R. S. J. Am. Chem. Soc. 1984, 106, 2421-2431. (f) Buchanan, R. M.; Mashutta, M. S.; Richardson, J. F.; Oberhausen, K. J.; Hendrickson, D. N.; Webb, R. J.; Nanny, M. A. Inorg. Chem. 1990, 29, 1299-1301. Scheme I

a $\{Cu_2-O_2\}$ species can be generated by reaction of O_2 with a mononuclear Cu(I) complex possessing the simple unidentate 1,2-dimethylimidazole (L) ligand.

Following Sorrell's observation that linear two-coordinate Cu(I) complexes (with nitrogen heterocyclic ligands) are unreactive to CO and O₂,⁸ we observed a similar phenomenon with [L₂Cu^I](PF₆) (1).⁹ However, when another equivalent of L is added to form [L₃Cu^I](PF₆) (2),¹⁰ derived solutions are extremely air sensitive. By then employing low-temperature manipulations that have been successfully applied to copper(I) complexes with aminoalkyl-pyridine polydentate ligands,^{5,11} we found that oxygenation of 2 at -90 °C in CH₂Cl₂ (manometry: Cu:O₂ = 2.06 ± 0.02) gave a stable, EPR-silent (77 K), intensely brown colored solution [UV-vis λ_{max} (ϵ , M⁻¹ cm⁻¹), 346 (sh, 2200),¹² 450 (sh, 1450), 500 (1900), and 650 (600) nm], formulated as the peroxo-dicopper(II) complex [{L₃Cu₂(O₂)]²⁺ (3) (Scheme I).

Reactivity studies have been found to be useful in characterizing copper-dioxygen complexes,¹³ and here they provide further evidence for the presence of a bound nucleophilic peroxo moiety. Reaction of tertiary phosphines PR₃ (R = Ph, Me) displaces the bound O₂ ligand in 3, as judged by the qualitative detection of dioxygen using pyrogallol,¹¹ and by the isolation of $[L_3Cu(PR_3)]^+$ (4).¹⁴ Reaction of 3 with an excess of acid (HPF₆·Et₂O, 10 equiv/Cu) generates H₂O₂ in ~75% yield as determined by iodometric titration. Also consistent with a peroxo-metal formulation,^{13a,b} complex 3 undergoes an immediate reaction with CO₂ at low temperature (-90 °C), which upon warming produces a carbonato-dicopper(II) complex [{L₃Cu₂(CO₃)](PF₆)₂ (5).¹⁵

(9) $[L_2Cu^1](PF_6)$ (1): Anal. Calcd for $C_{10}H_{16}CuF_6N_4P$: C, 29.96; H, 3.98; N, 13.98. Found: C, 29.91; H, 3.68 N; 14.00. The structure of 1 has been determined by X-ray crystallography showing a linear L-Cu-L unit; to be published elsewhere.

(10) $[L_3Cu^1](FF_6)$ (2): Anal. Calcd for $C_{15}H_{24}CuF_6N_6P$: C, 36.24; H, 4.88; N, 16.92. Found: C, 36.67; H, 5.11 N; 16.97. Λ_m (CH₃CN) = 144 Ω^{-1} cm² mol⁻¹ (1:1 electrolyte).

(11) Karlin, K. D.; Haka, M. S.; Cruse, R. W.; Meyer, G. J.; Farooq, A.; Gultneh, Y.; Hayes, J. C.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 1196-1207.

(12) The absorption at 346 nm is probably due to a $\pi_1(\text{imidazole}) \rightarrow \text{Cu(II}) \text{ LMCT}$ which was earlier seen by Schugar and co-workers in tetragonal Cu(II)-imidazole complexes. See: Bernarducci, E.; Bharadwaj, P. K.; Krogh-Jespersen, K.; Potenza, J. A.; Schugar, H. J. J. Am. Chem. Soc. 1983, 105, 3860-3866.

(13) (a) Tyeklár, Z.; Paul, P. P.; Jacobson, R. R.; Farooq, A.; Karlin, K. D.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 388-389. (b) Paul, P. P.; Tyeklár, Z.; Jacobson, R. R.; Karlin, K. D. J. Am. Chem. Soc., in press. (c) Kitajima, N.; Koda, T.; Iwata, Y.; Moro-Oka, Y. J. Am. chem. Soc 1990, 112, 8833-8839.

(14) The reaction of 3 with PPh₃ was slow and yielded $[L_3Cu^1(PPh_3)](PF_6)$ (4a) (yield = 67%) with a small amount of OPPh₃ (7%). Anal. Calcd for $C_{33}H_{39}CuF_6N_6P_2$: C, 52.16; H, 5.13; N, 11.06. Found: C, 51.51; H, 5.12 N; 10.76. With PMe₃ the reaction of 3 was fast and yielded 81-85% of $[L_3Cu^1(PMe_3)](PF_6)$ (4b), which was proved by ¹H NMR.

⁽⁸⁾ Sorrell, T. N.; Jameson, D. L. J. Am. Chem. Soc. 1983, 105, 6013-6017.

Further striking evidence for the formulation of $[L_3Cu]_2(O_2)^{2+}$ (3) and verification that it contains a bound $O_2^{2^2}$ ligand comes from its reaction with TMPA (TMPA = tris[(2-pyridyl)methyl]amine), which is known to form a purple trans-µ-1,2peroxo-bridged dicopper(II) complex (6) when [(TMPA)Cu¹-(RCN)]⁺ is reacted with O₂ at -80 °C.^{5,16} We observe that addition of TMPA (-90 °C) to the brown solution of 3 instantaneously transforms it to a purple solution with spectral features identical with those of 6 (Scheme I); the yield of this conversion is 81% based on the established spectrum of 6.16 We attribute this "peroxide transfer" reaction to the lability of unidentate L and the greater stability of the chelating TMPA ligand complex. This may prove to be an example of a dynamic "self-assembly" process¹⁷ utilizing a "preformed" Cu₂O₂ core. The structure of [{L₃Cu₂(O₂)]²⁺ (3) (CH₂Cl₂, 100 K) has been

probed by X-ray absorption spectroscopy.¹⁸ Edge comparisons with $[L_3Cu^{I}](PF_6)$ (2) indicate that 3 is a Cu(II) complex.¹⁹ Simulation of the EXAFS¹⁸ required four first-shell O/N ligands to account for the intensity of the first shell in the FT, while outer shell atom single and multiple scattering contributions from the imidazole rings alone were not sufficient to account for the intensity of the second shell in the FT. This extra intensity required either a Cu-Cu interaction or an O atom at 2.85 Å. The data could be interpreted by either of two models (A or B) shown herein.¹⁸ Structure A contains a bent μ - η^2 : η^2 -peroxo ligand, a bridging mode seen in acetylene-bridged dicopper(I) complexes;²⁰ structure A is also closely related to that proposed for other {Cu₂-O₂} complexes previously described.⁵ Kitajima and coworkers have structurally characterized a dicopper(II) complex with a planar μ - η^2 : η^2 -peroxo group.⁴ Model B possesses a planar Cu(II) coordination and has a trans- μ -1,2-peroxo group as is seen in 6.21

In conclusion, it is possible to generate a copper-dioxygen complex by using a simple imidazole ligand, by sufficiently lowering the temperature, thus thwarting further irreversible reduction $(e.g., Cu:O_2 = 4:1)^{22}$ or disproportionation. This observation is reminiscent of the behavior observed for simple iron(II) porphyrins

(15) $[I_{L_3}Cu_{l_2}(CO_3)](PF_6)_2$ (5): Anal. Calcd for $C_{31}H_{48}Cu_2F_{12}N_{12}O_3P_2$: C, 35.32; H, 4.56; N, 15.94. Found: C, 35.24; H, 4.76 N; 15.42. UV-vis (CH₂Cl₂): λ_{max} 360 (ϵ 1940), 712 (350). IR (Nujol): ν (PF) = 840 cm⁻¹, ν (CO) = 1255 cm⁻¹. EPR silent (CH₂Cl₂, 77 K). Λ_m (CH₃CN) = 250 Ω^{-1} cm² mol⁻¹

(16) Jacobson, R. R.; Tyeklár, Z.; Farooq, A.; Karlin, K. D.; Liu, S.;
Zubieta, J. J. Am. Chem. Soc. 1988, 110, 3690-3692.
(17) (a) Ibers, J. A.; Holm, R. H. Science 1980, 209, 223. (b) Lippard,
S. J. Angew. Chem., Int. Ed. Engl. 1988, 27, 344-361.

(18) Details of the data analysis are given in the supplementary material. The least-squares-fit indices were 1.33 and 1.50 for models A and B, respectively

(19) The well-resolved edge feature at 8984 eV present in 2 and assigned to the 1s-4p, transition in distorted 3-coordinate geometry is replaced in 3 by a featureless absorption edge shifted by ca. 5 eV to higher energy. (a) Blackburn, N. J.; Strange, R. W.; Reedijk, J.; Volbeda, A.; Farooq, A.; Karlin, K. D.; Zubieta, J. Inorg. Chem. 1989, 28, 1349-1357. (b) Blackburn, N. J.; Strange, R. W.; Farooq, A.; Haka, M. S.; Karlin, K. D. J. Am. Chem. Soc. 1988, 110, 4263-4272. (c) Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn,
 J. E.; Hodgson, K. O. J. Am. Chem. Soc. 1987, 109, 6433-6442.
 (20) (a) Villacorta, G. M.; Gibson, D.; Williams, I. D.; Whang, E.; Lippard, S. J. Organometallics 1987, 6, 2426-2431. (b) Reger, D. L.; Huff, M.

F.; Wolfe, T. A.; Adams, R. D. Organometallics 1989, 8, 848-850.

(21) At this time, we favor model B as the more plausible structure for $[\{L_3Cu\}_2(O_2)]^{2+}$ (3) because it possesses a reactivity pattern similar to that seen for 6.^{13a,b}

(22) At room temperature, complex 2 takes up oxygen with the stoichiometry of 4Cu:1O₂, suggesting a four-electron reduction of O₂ to give oxo-copper(II) species.

in their 1:1 O₂ binding.²³ Interestingly, the obvious difference in properties of $[\{L_3Cu\}_2(O_2)]^{2+}$ (3) and those of oxyhemocyanin (e.g., $\lambda_{max} = 350 \text{ nm}$ (ϵ , 20000); Cu--Cu = 3.56 Å)^{1b} suggests that 3 does not possess a $\{Cu_2 - O_2\}$ core structure like that observed in the protein, again illustrating the multiple structures possible for copper-dioxygen species.^{5,13a,b} Further studies will be directed toward additional characterization of 3 and synthetic modifications.

Acknowledgment. We are grateful to the National Institutes of Health (GM28962, K.D.K.; NS27583, N.J.B.) for support of this research.

Supplementary Material Available: Details of the data collection and data analysis (2 pages). Ordering information is given on any current masthead page.

(23) Collman, J. P.; Halpert, T. R.; Suslick, K. S. In Metal Ion Activation of Dioxygen: Metal Ions in Biology; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1980; Vol. 2, pp 1-72, and references cited therein.

Chemoenzymatic Synthesis of Optically Active (Meth)acrylic Polymers

Alexey L. Margolin,[†] Paul A. Fitzpatrick,[‡] Paul L. Dubin,[§] and Alexander M. Klibanov^{*,‡}

> Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Merrell Dow Research Institute 9550 North Zionsville Road Indianapolis, Indiana 46268 Department of Chemistry Indiana University—Purdue University at Indianapolis Indianapolis, Indiana 46205 Received January 15, 1991

Optically active polymers possess many interesting properties and have found applications in asymmetric syntheses, as chiral adsorbents for separation of racemates, and in liquid crystals.¹ A new approach to their synthesis would expand the scant arsenal of existing methods.¹ Recently, lipase-catalyzed asymmetric polycondensations have been explored for the production of optically active polyesters,² but the reaction rates and molecular weights obtained have been disappointing due to a plummeting reactivity of the enzymes toward higher molecular weight sub-

Following our proposal to resolve racemic alcohols by using them as nucleophiles in asymmetric transesterifications catalyzed by lipases in neat organic solvents³ (instead of conventional lipase-catalyzed, asymmetric hydrolysis of racemic esters in water4), this new strategy has become popular for the resolution of racemic alcohols,⁵ as well as such other nucleophiles as amines,⁶ thiols,⁷

(3) Cambou, B.; Klibanov, A. M. J. Am. Chem. Soc. 1984, 106, 2687. Kirchner, G.; Scollar, M. P.; Klibanov, A. M. J. Am. Chem. Soc. 1985, 107, 7072.

(4) For a review, see: Jones, J. B. Tetrahedron 1986, 42, 3351

(5) For reviews, see: Klibanov, A. M. Acc. Chem. Res. 1990, 23, 114. Chen, C.-S.; Sih, C. J. Angew. Chem., Int. Ed. Engl. 1989, 28, 695. Dordick, . S. Enzyme Microb. Technol. 1989, 11, 194. Margolin, A. L. CHEMTECH 1991, 21, 160.

strates.

Merrell Dow Research Institute.

[‡]Massachusetts Institute of Technology.

Indiana University—Purdue University at Indianapolis.

⁽¹⁾ Selegny, E., Ed. Optically Active Polymers; Reidel: Dordrecht, 1979. Ciardelli, F. In Encyclopedia of Polymer Science and Engineering, Mark, H. F., et al., Eds.; Wiley: New York, 1987; Vol. 10, pp 463-493.

⁽²⁾ Margolin, A. L.; Crenne, J.-Y.; Klibanov, A. M. Tetrahedron Lett. 1987, 28, 1607. Wallace, J. S.; Morrow, C. J. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 2553. Gutman, A. L.; Bravdo, T. J. Org. Chem. 1989, 54, 5645.